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Abstract

Zepeda and Pérez [41] have recently demonstrated the

promise of the exemplar SVM (ESVM) as a feature encoder

for image retrieval. This paper extends this approach in

several directions: We first show that replacing the hinge

loss by the square loss in the ESVM cost function signifi-

cantly reduces encoding time with negligible effect on ac-

curacy. We call this model square-loss exemplar machine,

or SLEM. We then introduce a kernelized SLEM which can

be implemented efficiently through low-rank matrix decom-

position, and displays improved performance. Both SLEM

variants exploit the fact that the negative examples are fixed,

so most of the SLEM computational complexity is relegated

to an offline process independent of the positive examples.

Our experiments establish the performance and computa-

tional advantages of our approach using a large array of

base features and standard image retrieval datasets.

1. Introduction

The exemplar support vector machine (ESVM), origi-

nally proposed by Malisiewicz et al. [24], leverages the

availability of large, unannotated pools of images within

the context of supervised learning. It uses a large generic

pool of images as a set of negative examples, while using a

single image (the exemplar) as a positive example. Given

these training sets, an SVM classifier is learned that can

generalize well, despite the drastically limited size of the

set of positive examples. This classifier has successfully

been used in classification, object detection and label trans-

fer [25]. Zepeda and Pérez [41] have proposed to treat in-

stead the weights of the resulting classifier as a new feature

vector for image retrieval. An ESVM feature is computed

for each database and query image, by treating it as the only

positive sample while keeping a fixed pool of generic neg-
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ative images. Searching amounts to computing distances

between the query and database ESVM features. Note that

ESVM features can be derived from arbitrary base features

(e.g., CNN activations) of the exemplar and the images in

the generic negative pool.

One drawback of the ESVM feature encoding approach

is that computing the classifier requires solving an optimiza-

tion problem for each positive example (i.e., each query and

each database image). This can be time consuming for the

large negative pool sizes required for good ESVM feature

performance. In this work, we propose using the square loss

instead of the hinge loss, in effect converting the ESVM

problem into a ridge regression, one that can be solved in

closed form. We dub the corresponding classifier a square-

loss exemplar machine (or SLEM). The square loss has been

used before to replace the hinge loss in classification tasks

(e.g., [37, 40]), and to compare ESVMs to classical classi-

fiers such as the linear discriminant analysis (LDA) [21]. In

contrast, we propose here to use SLEMs as feature encoders

for image retrieval.

Since computing the SLEM features requires inverting

a large matrix related to the training set’s covariance ma-

trix, we propose an efficient way to compute this inverse.

Similarly to the cross-validation method of residual error

of [9], we exploit the fact that only a single (positive) exam-

ple changes in the training set when computing SLEM fea-

tures for different images. We show experimentally that our

representation matches and even improves upon the perfor-

mance of ESVM features on three standard datasets using

a wide range of base features at a fraction of the original

computational cost.

We also introduce a kernelized variant of SLEM that

enjoys similar computational advantages and improves re-

trieval performances. Further computational and storage ef-

ficiency is obtained using low-rank factorization methods to

decompose the kernel matrix of negative samples. We claim

this kernelized descriptor and its efficient calculation as the

main contribution of this work.

The rest of this paper is organized as follows: In Section
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2 we provide an overview of various existing feature repre-

sentation methods. In Section 3 we first review the origi-

nal ESVM feature representation method and introduce the

proposed linear SLEM model. We then introduce the kernel

SLEM in Section 4 and present the low-rank approximation

that enables its efficient implementation in Section 5. We

evaluate the proposed method in image retrieval in Section

6, and present conclusions in Section 7.

2. Prior work

This paper addresses the problem of designing an image

representation suitable for content-based retrieval, in partic-

ular supporting effective (discriminative) and efficient (fast)

comparisons between a query picture and images stored in

some large database. These representations must be robust

to large image variations due to camera pose, color differ-

ences and scene illumination, amongst others.

Many successful approaches to image retrieval rely

on unsupervised models of codebook learning, such as

K-means [10] or Gaussian mixtures [28, 33]. These

approaches aggregate local descriptors of an image by

weighted average [27], triangular embedding [18] or gen-

eralized max-pooling [26] into a global feature descriptor.

Before the neural networks renaissance, these representa-

tions usually outperformed methods that exploit supervised

learning of image features directly [7, 32].

Today, with the success of convolutional architectures,

global image descriptors are often obtained by aggregating

and/or pooling their last convolutional layers [3, 20, 31] or

by addition of new differentiable layers to an existing archi-

tecture [1, 14].

3. The square-loss exemplar machine

In this section, we revisit the exemplar SVM model pro-

posed in [24] as an instance of a more general family of

classifiers. Then, we introduce the square loss exemplar ma-

chine (SLEM) as a simple variant of this model and study

its properties.

3.1. Exemplar classifiers

We are given base features in R
d at training time, one

positive example x0 in R
d and a set of negative examples

X = [x1, x2, ..., xn] in R
d×n, each column of X represent-

ing one example by a vector in R
d. We are also given a loss

function l : {−1, 1} × R → R
+. Learning an exemplar

classifier from these examples amounts to minimizing the

function

J(ω, ν) = θ l(1, ωTx0+ν)+
1

n

n
∑

i=1

l(−1, ωTxi+ν)+
λ

2
‖ω‖2,

(1)

w.r.t. ω in R
d and ν in R. In Eq. (1), λ and θ are respec-

tively a regularization parameter on ω and a positive scalar

adjusting the weight of the positive exemplar.

Given a cost l, we define the corresponding exemplar

classifiers of x0 with respect to X as the weights ω⋆(x0, X)
that minimizes the loss function J :

(

ω⋆, ν⋆
)

= argmin
(ω,ν)∈Rd×R

J(ω, ν).1 (2)

The exemplar SVM [24, 25] is an instance of this model

where l is the hinge loss, which is convex. The solution

of Eq. (2) can thus be found by stochastic gradient de-

scent [8] individually for each positive sample. The next

section shows how to calculate all exemplar classifiers si-

multaneously by changing the loss function.

3.2. The square loss

Now, let us study the same learning problem for the

square-loss function l(y, ŷ) = 1
2 (y − ŷ)2. As in the case

of the hinge loss, the minimization of Eq. (1) is a convex

problem. However it is now a ridge regression problem,

whose unique solution can be found in closed form as















ω⋆ =
2θ

θ + 1
U−1(x0 − µ),

ν⋆ =
θ − 1

θ + 1
−

1

θ + 1
(θx0 + µ)Tω⋆,

(3)

where:



















µ = 1
n

∑n
i=1 xi,

U = 1
n
XXT − µµT

+ θ
θ+1 (x0 − µ)(x0 − µ)T + λIdd,

(4)

where Idd is the identity matrix of size d.

Woodbury identity. We can simplify Eq. (3) by modi-

fying U in Eq. (4). Let us define A = 1
n
XXT−µµT+λIdd

as the regularized covariance matrix and assume its inverse

A−1 known. The matrix U now reads U = A + θ
θ+1δδ

T ,

where δ = x0−µ is the centered (w.r.t. the negatives’ mean)

positive sample. The Woodbury identity [39] gives us

U−1 = A−1 −
θ

θδTA−1δ + θ + 1
A−1δT δA−1. (5)

Substituting (5) in (3) yields

ω⋆ =
2θ

θ + 1

(

A−1δ −
θ

θδTA−1δ + θ + 1
A−1δ(δTA−1δ)

)

=
2θ

θδTA−1δ + θ + 1
A−1δ.

(6)

1Depending on the loss function l, ν⋆(x0, X) may not be unique.
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Equation (6) shows how to solve compute many exem-

plar classifiers simultaneously, by solving a single linear

system in A. Also note that the positive sample weight θ
does not influence the direction of the optimal vector ω⋆,

only its norm. This means that if search and ranking are

based on the normalized feature 1
‖ω⋆‖ω

⋆, e.g. using cosine

similarity, θ does not influence the matching score of the

SLEM vectors of two different images. This sets SLEM

appart from ESVM which requires this parameter to be cal-

ibrated [24, 41]. We can thus set the value of θ to any posi-

tive real number.

3.3. LDA and SLEM

It is interesting to note the relationship between SLEM

and the classical linear discriminant analysis (LDA). Let us

return to Eq. (1) and suppose that we have multiple positive

samples. It can be shown that in this case, the corresponding

linear classifier of Eq. (1) for the square loss is also given

by (3), where x0 denotes this time the center of mass of the

positive samples if the positives have the same covariance

matrix Σ as the negative samples X .

This equal-covariance assumption is of course quite re-

strictive, and probably unrealistic in general. It is interesting

to note, however, that this is exactly the assumption made by

linear discriminant analysis. As shown in [16] for example,

LDA is a (non-regularized) linear classifier with decision

function ωTx+ ν, where

{

ω = Σ−1(x0 − µ),

ν = −
1

2
(x0 + µ)Tω.

(7)

This shows that, for a single positive sample, SLEM and

LDA are very similar: Indeed, taking λ = 0 (i.e. no regu-

larization) and θ = 1, we have ν⋆ = ν, A = Σ and that the

vectors ω of Eq. (7) and ω⋆ of Eq. (6) have the same di-

rection, reducing SLEM to LDA. Many interesting proper-

ties of LDA have been used recently for classification tasks

[12, 15]. With our simple generalization of LDA, we hope

to obtain superior results.

4. The kernel SLEM

4.1. Kernel methods

Let us recall a few basic facts about kernel methods for

supervised classification. We consider a reproducing ker-

nel Hilbert space (RKHS) H formed by real functions over

some set X , and denote by k and ϕ the corresponding re-

producing kernel and feature map (which may not admit a

known explicit form) over X , respectively. We address the

following learning problem over H × R:

min
h∈H,ν∈R

1

n

n
∑

i=1

l(yi, 〈ϕ(xi), h〉+ ν) +
λ

2
‖h‖2H , (8)

where the pairs (xi, yi) in X × {−1, 1}, i = 1 . . . n are

training samples, and 〈h, h′〉 is the inner product of element

h and h′ in H . We dub problems with the general form of

(8) affine supervised learning problems since, given some

fixed element h of H and some scalar ν, 〈h, h′〉 + ν is an

affine function of h′, whose zero set defines an affine hyper-

plane of H considered itself as an affine space.

Let K denote the kernel matrix with entries kij =
〈ϕ(xi), ϕ(xj)〉 and rows kTi = [ki1, ki2, ..., kin], i in

{1, . . . , n}. We assume from now on that l is convex and

continuous. Under this assumption, Eq. (8) admits an

equivalent formulation

min
α∈Rn, ν∈R

(

1

n

n
∑

i=1

l(yi, k
T
i α+ ν) +

λ

2
αTKα

)

, (9)

and any solution (α⋆, ν⋆) to (9) provides a solution (h⋆, ν⋆)
to (8) with h⋆ =

∑n
i=1 α

⋆
iϕ(xi) + ν⋆. This result follows

from the Riesz representation theorem [34, 38].

Assuming our reproducing kernel is semidefinite posi-

tive, K is a semidefinite positive matrix and can be decom-

posed as K = BBT . Using this factorization, the kernel-

ized problem can be expressed as

min
β∈Rr,ν∈R

(

1

n

n
∑

i=1

l(yi, b
T
i β + ν) +

λ

2
‖β‖2

)

, (10)

where bTi denotes the i-th row of B and r is the number

of columns of B. If (β⋆, ν⋆) is the solution of Eq. (10),

the corresponding vector α⋆ (or, more correctly, a corre-

sponding vector of dimension n ≥ r) can be computed by

α⋆ = Pβ⋆, where P is the pseudoinverse of BT .

Note that Eq. (10) is written as the usual form of a linear

classifier. In particular, it allows us to write the kernel learn-

ing problem (8) as an instance of Eq. (1) by setting θ = 1
n

(we set this value of θ for the remaining of this work) and

yi = −1 for all but one training sample. For our approach,

we wish to solve (10) for many positive exemplars against

the same set of negative training samples. In the following

subsections, we show how to take advantage of the fixed

negative samples to efficiently solve (10).

4.2. Offline preprocessing of negative samples

Let us now return to the (kernelized) SLEM, taking l as

the square loss. In order to calculate offline all operations

that are dependent only on negative samples, let us denote

by K the kernel matrix of the negative samples X . The pre-

processing phase consists of the calculation of the decom-

position B and the constants of Eq. (6): µ = 1
n

∑n
i=1 b

T
i

and A = 1
n
BTB−µµT +λIdr. These operations are done

offline and their results are stored.
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4.3. Online addition of a positive sample

We now wish to write Eq. (10) as an exemplar classifier,

with one positive example x0 and n negative examples X .

We denote by K ′ the augmented kernel matrix obtained by

adding this sample,

K ′ =

[

k00 kT0
k0 K

]

, (11)

where k00 = 〈ϕ(x0), ϕ(x0)〉 is a scalar and k0 =
[〈ϕ(x0), ϕ(xi)〉]1≤i≤n is a vector in R

n. The following

lemma shows how the factorization of K ′ can be derived

from the factorization of its sub-matrix K and the solution

of a n× n linear system.

Lemma 1. The augmented kernel matrix K ′ can be factor-

ized as K ′ = B′B′T with

B′ =

[

u vT

0 B

]

, v = B†k0, u =
√

k00 − ||v||2, (12)

where B† is the pseudoinverse of B.

Proof. For B′ defined by (12), we have that

B′B′T =

[

u2 + ‖v‖2 vTBT

Bv BBT

]

=

[

k00 vTBT

Bv K

]

. (13)

Since K ′ is positive semidefinite, k0 must lie in the column

space B of B. Indeed, if we suppose k0 does not belong

to B, then it can be decomposed uniquely as k0 = s + t,
s ∈ B and t ∈ B⊥, with t 6= 0. In one hand, K ′ being

semidefinite positive implies that [1,−atT ]K ′[1;−at] =
k00−2a‖t‖2 ≥ 02 for all real value a. In the other hand, for

a large enough, k00 − a‖t‖2 ≤ 0, which is a contradiction.

Hence v = B†k0 is an exact solution of Bv = k0. The fact

that k00−‖v‖2 is non-negative comes from the fact that the

Schur complement K−k0k
T
0 /k00 of k00 in K ′ is itself pos-

itive semidefinite. Indeed, since the matrix k00K−k0k
T
0 =

B(k00Idr − vvT )BT is also positive semidefinite. Thus

vT (k00Idr − vvT )v = ‖v‖2(k00 − ‖v‖2) ≥ 0.

This lemma allows us to add a positive sample to

Eq. (10). With a positive exemplar, it now reads

1

n
(b′T0 β + ν − 1)2 +

1

n

n
∑

i=1

(b′Ti β + ν + 1)2 +
λ

2
‖β‖2,

(14)

with b′Ti being the (i + 1)-th row of B′, i in {0, 1, ..., n}.

In particular, b′0 = [u; v] and, for i > 0, b′i = [0; bi].
The solution (β⋆, ν⋆) in R

r+1 ×R can be computed just as

before by Eq. (3), replacing x0 by b′0, µ by µ′ = 1
n

∑n
i=1 b

′
i

2We use matlab notation for horizontal and vertical staking.

and X by the (r+1)×n matrix Q of columns b′1, b
′
2, ..., b

′
n.

The solution α⋆ is now calculated as α⋆ = P ′β⋆, where

P ′ = [u−1 0T ;−u−1Pv P ] is the pseudoinverse of B′T .

α⋆ can be expressed by the linear system
[

α0

α̂

]

=

[

1
u

0T

− 1
u
Pv P

] [

β0

β̂

]

. (15)

4.4. Similarity score

Once the optimal parameters (β, ν) from (14) and the

coordinates u, v of b′0 from (12) have been found3, they can

be used directly for measuring similarity between matching

images.

Suppose two image descriptors x0 and x′
0 are given

and we wish to calculate the similarity score between their

SLEM representations h and h′, denoted by s(h, h′). We

write h′ = α′
0ϕ(x

′
0) +

∑n
i=1 α

′
iϕ(xi) + ν′. Using Eq. (15)

and ignoring biases ν and ν′ which have empirically no in-

fluence, s(h, h′) is given by:

s(h, h′) = 〈h, h′〉

= α̂TKα̂′ + α0k(X,x0)
T α̂′ + α′

0k(X,x′
0)

T α̂

+ α0α
′
0k(x0, x

′
0)

= β̂T β̂′ + λ−2(k(x0, x
′
0)− vT v).

(16)

For a given image whose descriptor is x0, we need

to store x0, β̂ and v to calculate its similarity score to

whichever other image for SLEM. Since we assume the

base feature x0 has dimension p and β̂ and v each have di-

mension r, we store a vector of dimension p + 2r for each

image.

5. Efficient implementation

When compared to the linear square-loss classifier of

Section 3.2, one drawback of the kernelized approach is that

the dimension of our problem grows with the size n of the

negative samples. The offline factorization BBT of K de-

mands O(nr) storage and at best O(nr2) time. This factor-

ization can be obtained in two ways: full-rank and low-rank

decomposition. In this section we propose three different

decompositions of K and discuss their respective merits.

5.1. Fullrank decomposition

CCD: The complete Cholesky decomposition (CCD)

is the most used factorization of positive-definite matri-

ces in kernel-based learning due to its time efficiency [5].

We use it as our default decomposition. We make sure

K is positive-definite by adding ǫ to its diagonal, where

ǫ = min(0,−λmin) and λmin is the smallest eigenvalue

of K. Therefore, B also has rank n and can be calculated

by CCD from the identity BBT = K + ǫIdn.

3We drop the “⋆” in this subsection to avoid cluttering the notation.
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5.2. Lowrank decomposition

One of the major constraints of large scale retrieval is the

minimization of storage. As discussed in Section 4.4, for

each database image we store its base representation plus a

2r vector. Hence, we aim to decompose K at a small rank

r. Two classical methods can be used to obtain a low-rank

decomposition of K.

ICD: The incomplete Cholesky decomposition (ICD) is

widely used in machine learning [5, 11]. It is similar to

CCD, and greedily chooses which column of K to add to the

decomposition based on the gain in approximation error [6].

The algorithm stops after r steps, obtaining the factor B in

time O(nr2).
KPCA: Kernel PCA (KPCA) [35] computes the factor B

by performing a singular value decomposition of K (trun-

cated singular value decomposition for very small values of

r), and making each column of the factor correspond to one

of the top r singular vectors. The resulting matrix B is guar-

anteed to be the best r-rank approximation of K according

to the Frobenius norm. The computational cost of KPCA is,

however, O(n2r) [13].

When comparing computation time, KPCA is slower

than ICD for small values of r and faster for values of r
such that the residue is small. Also, as discussed above,

KPCA gives a smaller residue tr(K −BBT )/tr(K). From

these comparisons, we set KPCA as our default low-rank

decomposition. The only case ICD is more appropriated

than KPCA is for very large number of negatives n, for

which the time complexity of KPCA becomes an issue, and

very small rank r. This particular case is further studied in

Section 6.5.

6. Experimental Evaluation

6.1. Datasets and evaluation protocol

We perform experiments on three standard datasets for

image retrieval.

• The INRIA Holidays dataset [17] consists of 1491

images divided in 500 groups of matching images.

We manually rotate by 90 degrees some images that

are not in their natural orientation to compensate for

the fact that CNN features are not rotation invari-

ant [1, 4, 14, 20, 31].

• The Oxford5k dataset [29] consists of 5063 images

separated in 55 groups of matching images, each group

associated to a landmark of Oxford. We use the “full”

crop, ignoring the region of interest of each image.

• The Oxford105k dataset [29] is a large-scale dataset

containing the same images and queries from Ox-

ford5k plus Flickr100k, a collection of 105 distractor

Flickr images.

As pool of negative images to build SLEMs, we use the

Flickr100k for both Holidays and Oxford5k. When evaluat-

ing Oxford105k, where Flickr100k is part of the database,

we us instead the Paris dataset [30] as negative samples.

6.2. Kernels

We have tested two different kernels, each with a scalar

parameter γ.

Gaussian SLEM:

k1(x, y) = e−γ‖x−y‖2

; (17)

Poly SLEM:

k2(x, y) = xT y + γ(xT y)2. (18)

6.3. Base visual features

We test our feature encoder for four different base fea-

tures: the hand-crafted VLAD image representation and

three learned features derived from the activation coeffi-

cients of deep Convolutional Neural Networks.

We use the same VLAD variant of [10] used in [41] that

relies on densely-extracted rootSIFT [2] local descriptors,

per-cluster normalization, PCA-based rotations, and root

normalization. Like [41], we use 64 clusters, for a final

feature of size 8192.

The first CNN features we use consist of the activation

coefficients of the previous-to-last layer of the AlexNet ar-

chitecture [22], based on a publicly available pre-trained

model [19]. These are also the features used in [41].

The SPoC features [3], which are tailored specifically

for the image retrieval application, consist of spatially-

weighted sums of the activations of the last convolutional

layer of the 19-layer VGG network [36].

Finally, we use the NetVLAD features [1], trained for

place recognition. These features are obtained by adding

a differentiable version of the VLAD algorithm [10] as a

layer at the end of a convolutional architecture.

6.4. Image retrieval results

We use the base features of the previous subsection as

baseline. Since Babenko and Lemptisky [3] and Arand-

jelović et al. [1] have improved retrieval results by apply-

ing PCA followed by whitening to their features, we also

apply this post-processing to our base features as a second

baseline (PCAW), compressing base feature dimension to

half of the original. We then compare the baselines with the

original ESVM, LDA and several variants of our approach

(SLEM), since all the those methods are based on similar

ideas. The results are presented in Table 1. For the large-

scale dataset that is Oxford105k, we limit our experiments

to our best performing base features, SPoC and NetVLAD.

Linear SLEM performs similarly to ESVM while be-

ing much more time efficient (Fig. 1). The fact that a

2400



Dataset Holidays Oxford 5k Oxford 105k

Model, features VLAD SPoC AlexNet NetVLAD VLAD SPoC AlexNet NetVLAD SPoC NetVLAD

Baseline 72.7 76.5 68.2 85.4 46.3 54.4 40.6 67.5 50.1 65.6

PCAW 75.5 81.7 69.2 88.3 50.9 63.7 45.0 69.1 55.5 66.1

LDA 54.7 82.2 64.1 74.3 29.6 62.2 42.5 72.7 52.4 40.7

ESVM [41] 77.53 84.03 71.3 91.42 57.23 62.1 43.9 72.5 56.5 67.5

Linear SLEM 78.02 82.3 72.1 91.33 59.3 64.13 46.23 72.93 56.73 68.03

Gaussian SLEM (16) 76.8 80.3 71.2 91.42 52.8 63.0 43.5 71.9 55.8 67.4

Gaussian SLEM (32) 77.4 81.7 72.03 91.42 54.9 63.1 44.0 71.1 56.0 67.8

Gaussian SLEM (fr) 78.1 86.22 72.9 91.7 59.02 64.9 47.02 74.4 59.52 70.02

Poly SLEM (16) 76.9 82.3 71.4 91.33 53.0 63.6 43.6 71.4 56.1 67.5

Poly SLEM (32) 77.3 82.4 72.12 91.7 54.9 63.6 44.1 71.6 56.3 67.9

Poly SLEM (fr) 78.1 86.3 72.9 91.7 59.3 64.82 47.3 74.12 62.5 70.2

Table 1: Mean average precision (mAP) results for INRIA Holidays and Oxford buildings datasets, expressed as percentages.

In this table, we present our results for VLAD [10], sum-pooling of convolutional features (SPoC) [3], activation coefficients

from the previous-to-last CNN layer (AlexNet) [22] and activation of NetVLAD layer [1]. In parentheses, the rank of he

decomposition (‘fr’ for full rank decomposition). For each column, we show in bold the best results and index the second

and third best.

hinge-loss classifier does not outperform a square-loss clas-

sifier can seem counter-intuitive, but both have been shown

to be equivalent for binary classification under mild con-

straints [40].

We use both Gaussian SLEM and Polynomial SLEM

with two decompositions: one full-rank CCD decomposi-

tion indicated by (fr) and two low-rank KPCA decomposi-

tions indicated by the rank of the decomposition. We train

our exemplar classifiers for 15000 negative samples. For all

the experiments we calibrate the regularization cost λ, as

well as the parameter γ similarly to the calibration in [41].

The full-rank variant outperforms all methods for all

base features, although the gains when compared to linear

SLEM are not always significant (e.g. for VLAD features).

We notice significant improvement for SPoC in both Holi-

days and Oxford and for AlexNet and NetVLAD in Oxford.

6.5. Time and storage scalability

In this section we compare the time efficiency of our

method and the ESVM, as well as discuss which method

and decomposition to use according to the number of nega-

tive samples.

In Fig. 1, we see that the linear SLEM efficiency does

not change with n. Indeed, if d is the dimension of the

base representation, A is a d × d matrix for linear SLEM,

whereas for a full-rank kernel, A is n × n. This explains

the increasing running time for Gaussian and polynomial

kernels: storage and solving a n × n system does not scale

for large number of negative samples.

Retrieval results for full-rank kernelized SLEM in Fig. 1

suggest we can benefit from larger sets of negative samples.

We, however, limit our full-rank experiments to n = 15000
negative samples due to the O(n3) complexity of the of-

fline step. When we consider only the online procedure of

our model, i.e. the calculation of β⋆, our kernelized model

has a similar time efficiency to ESVM. Therefore, we can

process the kernel SLEM for the Gaussian and polynomial

kernels in similar running time to ESVM if we pre-process

our negative samples offline.

For low-rank decompositions, we present in Fig. 2 a

comparison in average precision between KPCA and ICD

decompositions using SPoC on the Holidays dataset, fixing

n and varying r. The superior results justify our preference

for KPCA, despite its less efficient offline step. The only

advantage of ICD over KPCA is its time complexity, lin-

ear in the number of negative samples, that allows a bigger

number of negative samples. In Fig. 3 we show results for

ICD for bigger pools of negative samples, to which a KPCA

decomposition would be too time consuming. The results

suggest that the performance of ICD SLEMs are not sen-

sitive to the number of negative examples at a fixed small

rank.

As shown by Fig. 2, the mAP for the low-rank KPCA ap-

proximation increases with the rank. Its maximum value for

the features of the figure is 86.3 for full rank, r = 15, 000
(Table 1, col. 2). Figure 2 also shows, however, that rea-

sonable mAP values (around 84) are obtained for a much

smaller rank of 200. In keeping with the usual practice in

image retrieval, we limit even further the rank in the results

shown in Tables 1 and 2, with very small ranks (16 and 32)

that yield a total feature dimension similar to the base rep-

resentation, and allow a direct comparison to methods using
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Figure 1: Results for INRIA Holidays, using SPoC features and different variants of full-rank SLEM. We use T = 105

iterations for all n to report mAP for ESVM, as suggested by [41], but report timings using T = 1.66n and the values

reported in Table 1 of [41]. Left: mAP; Right: computation time in solid line, online computational cost in dashed line.
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Figure 2: mAP for Holidays using SPoC + Poly SLEM for

n = 15000 negatives. We perform two low-rank decompo-

sitions and compare its results at similar ranks.

these features directly. This rather extreme compression is

also justified in part by the fact that these very-low rank

factorizations already capture a reasonable part of the prob-

lem structure. Indeed, the relative residual error for SPoC

features on Holiday with 15,000 negatives is only 0.39 for

r = 16 and 0.31 for r = 32. For reference, the relative error

decreases to 0.08 for r = 600, and 0.05 for r = 1024.

6.6. Comparation to the state of the art

We compare the state-of-the-art global descriptors for

Holidays and Oxford 5k to both SPoC and NetVLAD fea-

tures improved by linear SLEM and low-rank Poly SLEM

in Table 2. We do not include re-ranking nor query expan-

sion. We perform PCA and whitening to compress both de-
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Figure 3: mAP for Holidays using SPoC + Poly SLEM,

using ICD and fixed 32-rank.

scriptors to 256 and 512, as done in [1, 3] and compare the

results by brackets of dimension. We also add a bracket of

the full 4096-dimension NetVLAD for completeness, so we

include our best performance. Our approach outperforms

the state of the art for Holidays by 2.5 points in 256 dimen-

sions and 0.8 in 512 dimensions, despite not using the best

performing descriptors [14] as base features.

7. Conclusion and future work

In this paper, we have addressed the problem of im-

age retrieval using the kernelized square-loss exemplar ma-

chines, and its efficient implementation. The main novelty

of the paper is two-fold: First, using the square loss, which

avoids retraining for each additional positive training exam-
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Features rank dim Hol. Ox5k

Babenko et al.[3] - 256 80.2 58.9

Radenović et al. [31] - 256 81.5 77.4

Arandjelović et al. [1] - 256 86.0 62.5

Kalantidis et al. [20] - 256 83.1 65.4

SPoC + Linear SLEM - 256 81.5 64.7

SPoC + Poly SLEM 16 288 80.1 63.6

SPoC + Poly SLEM 32 320 81.8 63.6

NetVLAD + Linear SLEM - 256 88.5 65.9

NetVLAD + Poly SLEM 16 288 87.7 65.5

NetVLAD + Poly SLEM 32 320 88.3 65.6

Radenović et al. [31] - 512 82.5 79.7

Arandjelović et al. [1] - 512 86.7 65.6

Kalantidis et al. [20] - 512 84.9 68.2

Gordo et al. [14] - 512 89.1† 83.1†

SPoC + Linear SLEM - 512 82.3 64.1

SPoC + Poly SLEM 16 544 82.3 63.0

SPoC + Poly SLEM 32 576 82.4 63.1

NetVLAD + Linear SLEM - 512 89.3 72.3

NetVLAD + Poly SLEM 16 544 89.9 71.9

NetVLAD + Poly SLEM 32 576 89.9 72.3

Arandjelović et al. [1] - 4096 88.3 69.1

NetVLAD + Linear SLEM - 4096 91.3 72.9

NetVLAD + Poly SLEM 16 4128 91.3 71.2

NetVLAD + Poly SLEM 32 4160 91.7 71.7

Table 2: Compared results to state-of-the-art features at

similar dimensions, without re-ranking or query augmenta-

tion. The results using Poly SLEM add 32 or 64 dimensions

to the original feature (for r = 16 or r = 32, respectively).

Underlined results are the best at each dimension bracket

and bold results are the general best. † indicates the previ-

ous state-of-the-art.

ple and calibrating one of its parameters; second, kerneliz-

ing the method while keeping a reasonable memory foot-

print through the use of low-rank approximations. Similar

ideas have of course been used in other contexts in machine

learning [5, 11, 35, 37, 40]. Our work is, however, to our

knowledge, the first to apply these ideas to examplar-based

classifiers, in particular in the context of image retrieval.

We have obtained significant improvements over the base

features we tested and outperformed similar encoders on

different datasets. As future work, we plan to work on a

convolutional implementation similar to [1] so its param-

eters can be learned in a supervised manner. The use of

other kernel functions is worth investigating. The polyno-

mial kernel performs similarly to the Gaussian kernel, even

though the Hilbert space obtained from the Gaussian kernel

has infinite dimensions and the Hilbert space obtained from

the polynomial kernel does not. Different kernels such as

the spatial pyramid kernel [23] are another option, which

would increase the versatility of our approach. Finally, our

method constructs a generic feature encoding and therefore

can be used in many other computer vision problems, such

as object classification and scene recognition.
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